WrittenTest1 Practice: Q1

For each of the following descriptions, choose the best matching kind of methods (constructors, accessors, mutators).

Implementation is meant to initialize values of some attributes.

Calls to this kind of method should be used as value expressions (e.g., RHS of variable assignments, values to be printed to the console).

Name must match that of the class.

Calls to this kind of method must stand alone and cannot be used as value expressions (e.g., RHS of variable assignments, values be printed to the console). ‘

Return type is always void.

Name can be arbitrary and implementation must contain at least one return statement.
Calls to this kind of method must be associated with the new keyword.
Name can be arbitrary and implementation cannot contain any return statement.

Return type can be either primitive or reference.

O CLILSOr - %e:‘(’\'t(‘
? .3&'\'%(3 ,‘

mutators » Retber

N

int

yor&

\ ':_cP,B

constructors

accessors

constructors

mutators

mutators

accessors

constructors

mutators

accessors

T -Sefk®@y; 1.7

et

“»

L1

“»

“»

L1

<

“»

“»

<

WrittenTest1 Practice: Q2

Assume a ‘Person’ class declared with: a string attribute “name’ and a constructor initializing that string attribute using the input parameter.

Now consider the following fragment code which implements the *main” method of some console application class:

Person pl1 = new Person("Alan");

Person p2 = new Person("Mark");
Person p3 = new Person("Alan");
Person p4 = p2;

p2 = pl;

pl = p4;

p4 = p3;

p3 = pl;

System.out.println("Done!");

Now say we place a breakpoint at the last line of the above fragment of code and debug it as Java Application. For the following list of statements, choose all which are false.

a. Addresses stored in p2 and p4 are the same.
[] b. The “name" attribute value of p1is the same as that of p3.
c. Addresses stored in p2 and p3 are the same.
d. The "name’ attribute value of p1is the same as that of p4.
e. Addresses stored in p1and p2 are the same.
f. The “name’ attribute value of p1is the same as that of p2.
g. The "name’ attribute value of p2 is the same as that of p3.
(] h. The ‘name" attribute value of p2 is the same as that of p4.
[]i. Addresses stored in p1and p3 are the same.
j. The ‘name" attribute value of p3 is the same as that of p4.
k. Addresses stored in p3 and p4 are the same.

|. Addresses stored in p1 and p4 are the same.

WrittenTestl Practice: Q3

Consider the following class:

public class Point {
private double x;
private double y;
public Point(double x, double y) {
this.x = x;
this.y

this.y = this.y + units;

}
publi ‘ getDistanceFromOrigin() {

return Math.sqrt(Math.pow(this.x, 2) + Math.pow(this.y, 2));
}
}

dovble

Y
} /
public veUp(double units) {

Now say we have the following variable declared and initialized:

IPoint p = new Point(3.4, 5.7);

From the following independent lines of code, chose those which compile (i.e., without any syntax or type error).

e = deoble X

% a. int dist = p.getDistanceFromOrigin();
e

X

[ﬂ’c System.out.println(psgetDistanceFromOrigin());
M p.getDistanceFromOrigin();

»{ b. double dist = p.movel

[Me. double dist = p.getDistanceFromOrigin();

44 , e turns
-

R g. System.out.printin(pjmovedp \f O &

nt =232 h)
dovble d= '{6-13)

v
i=d X V= [inhdz
\
dooble =1itnt ‘u\;‘{é
d= \. s V7

v
1= 3.0

WrittenTest1 Practice: Q4

Consider the following Java class defining a template for points on a 2-dimensional plane, each of which characterized by its position: x and y co-ordinates.

public class Point {

private int x; Consider the following fragment of code testing the above class:
private int y; g . Ty
public Point(int x, int y) { Point p1 = New Pomt(X s 5),
:g?s-“ x; Point p2 = new Point('Y', 5);
is.y = y; : :
} Point p3 = new Point(3, 0);
public Point(char axis, int dist) { Point p4 = hew P01nt(0 1)
if(axis == "X’) { TR " ’ ’
this.x = dist; p4.move(D) 5)’
this.y = 0; pl.move('L", 1);
} .
else if(axis == '¥’) { p3.move('D", 2);
this.y = dist; p2.move('L", 2);
this.x = 0;
e pl.move('U", 2);

p3.move('R', 1);
p4.move('L', 6);

public void move(char direction, int dist) {

if(direction == 'U’) {
this.y = this.y + dist; p2.move('D", 2);

else if(direction == 'D’) {
this.y = this.y - dist;

}

else if(direction == 'L’) {
this.x = this.x - dist;

}

else if(direction == 'R’) {
this.x = this.x + dist;

i

}
}

After executing the above lines of code creating and manipulating point objects, what are the positions of the four points (p1, p2, p3, p4)?

p3 \ (4, -2) s |
P4| (-6,-4) & \
p2| (2,3 ¢ |

p1 \ (4, 2) $ \

WrittenTest1 Practice: Q5

Assume that a Person class is already defined, and it has an attribute name, a constructor that initializes the person’s name from the input string, and an accessor ‘getName" returning the E !
person's name. Consider the following fragment of Java code (inside some main method): U

new Person("Suyeon"); <

new Person("Yuna"); —

new Person("Sunhye"); “ ?CrSQ'\S 9\~ lt'\s'\'\ _:_\ Va(1 -— V A(
0 = pZ; =
oL b o L8 ol 4-o -\ S

Person p@
Person pl
Person p2
Person p3

wononon

new Person("Jihye");

Person[] personsl = {p@, pl, p2, p3}; ‘ q
Person[] persons2 = new Person[personsl.length]; — ' -_— \. '—-L
for(int i = @; i < persons2.length; i ++) { 1

persons2[i] = personsl[persons2.length - i - 1]; \

. 3 O

Executing the above fragment of code, after exiting from the loop, indicate the value of each of the following expressions.

personsZ[O].getName()‘ "Jihye"

person52[3].getName()‘ "Sunhye"

——
personsZ[Z]getName()‘ "Jihye"

persons2[1].getName() ‘ "Sunhye"

2 Person Pe
Q0" |name|3vy<" 2 |name

\

chse‘«s 1 —

=] Qd 500829 N [

WrittenTest1 Practice: Qé

Consider the following call stack where method ma from class A throws a NegValException:

LY -
oOf\ %\Y\ &) F
y
Method A.ma causes an error and an Z-/_

\
NegValException object is thrown eXC'Q CP*\ O V\

> method call

method call

throws an
exception
Method B chooses not to handle the
forwards/ /elrnr:o;”’ and propagates it
propagates to its caller (i.e., Tester.main).

an exception

Method Tester.main method
chooses to handle this error, so that
this NegValException is not
propagated further.

catches an
exception

ATA VA ¢

In the above call stack, upon satisfying the catch-or-specify requirement, how many methods opt for the specify option? Your answer must be an integer value.

Answer: ‘ 2

Catch-or-Specify Requirement: Call Stack

@r'ﬁ\n of exception

> Jandles excephion
Ci+1.Mi+1

Ch-2.Mmn-2
Cn-1.Mn-1

e,v»{-rﬂ 'Po't 'y
of execution

Cn.mn &

WrittenTest1 Practice: Q7

At a runtime call stack, if a method implements a try-catch block to handle a NegValException that may be thrown from its callee, then this
method's caller is still obliged to either catch or specify that NegValException.

Select one:
O True

@® False

co\lee
+hrows

cekcned &

has dry- cat ch

Col\le

WrittenTest1 Practice: Q8

Recall the assumptions made on the counter example:

e The counter's maximum value is 3.

o A correct implementation of the increment method should throw a ValueTooLargeException when the counter's current value reaches Co.u

the maximum.

Now consider the following console tester:

1 |public class CounterTester2 {

2 public static void main(String[] args) {

3 7] Counter c = new Counter();

4 2println("Current val: " + c.getValue());

5 try {

6 3 c.increment(); c.increment(); c.increment/();

7 y println("Current val: " + c.getValue());

8 try

9 Ec.increment () ;

10 L T ar epta N T
11) /* end of inner try */

12 catch (ValueTooLargeException e) {

13 éprintln("Success: ValueTooLargeException thrown.");
14 } /* end of inner catch */

15 } /+ end of outer try x/

16 catch (ValueTooLargeException e) {

7 println("Error: ValueToolargeException thrown unexpectedly.");
18 } /* end of outer catch */

19 Fena Or MaIll MeCioad =+

20 |} /* end of CounterTester2 class */

Say the method ‘increment’ is implemented correctly as explained above.

From the following lines of execution, drag and drop the relevant ones to indicate the corresponding runtime execution path.

Where the execution already terminates, drag and drop "Execution Terminated" to the execution line.

counter Valve

c.inG
cinc
cane

C..nG

o¢3

0—531

1 c

13 A
<D

2L >3

2 29

X

1st line to execute (if any): ‘ L3 of CounterTester2 |

2nd line to execute (if any): | L4 of CounterTester2 ‘

3rd line to execute (if any): | L6 of CounterTester2

4th line to execute (if any):| L7 of CounterTester2

5th line to execute (if any): | L9 of CounterTester2 |

6th line to execute (if any): | L13 of CounterTester2 ‘

7th line to execute (if any): | Execution Terminated |

WrittenTest1 Practice: Q9

Recall the assumptions made on the counter example:

e The counter's maximum value is 3. ¢‘ 'ﬁ‘\ S ‘:! !nig f M‘! l‘!&

« A correct implementation of the increment method should throw a ValueTooLargeException when the counter's current value reaches the maximum.

eme | O —?133

Now consider the following console tester:

public class CounterTester2 ({ C."\C —l —_— &

1
2 public static void main(String[] args) { C ..M.f. 3 1.)3
3 < counter ¢ = new Counter(); 0‘ ~—

4 ‘zprintln("Current val: " + c.getValue());

o try {

6 c.increment(); c.,increment(); c.increment();
7 println("Current val: " + c.getValue());

8 try {

9 c.increment () ;

10 éprintln("Error: ValueTooLargeException NOT thrown.");

11 } /* end of inner try */

12 catch (ValueTooLargeException e) {

13 X println("Success: ValueToolLargeException thrown.");

14 1 — - e

15 } /+ end of outer try */

16 catch (ValueTooLargeException e) {

17\ println("Error: ValueToolLargeException thrown unexpectedly.");

18/ } /* end of outer catch */

19 > e

20 |} /* end of CounterTester2 class */

Say the increment method is implemented incorrectly as follows: 1st line to execute (if any): | L3 of CounterTester2 |

2nd line to execute (if any):| L4 of CounterTester2 |

public vo@ inFeme&) tlirows ValueTooLargeException {
if (value > Counter.MAX_VALUE) {

esthrow new ValueTooLargeException("value is " + value);
} 4th line to execute (if any): | L7 of CounterTester2
1se { value ++; }

3rd line to execute (if any):| L6 of CounterTester2

5th line to execute (if any):| L9 of CounterTester2

rom‘the following lines of execution, drag and drop the relevant ones to indicate the corresponding runtime execution path. A | 110 of CounterTester2

7th line to execute (if any): | Execution Terminated

Where the execution already terminates, drag and drop "Execution Terminated" to the execution line.

WrittenTest1l Practice: Q10

Recall the assumptions made on the counter example:

¢ The counter's maximum value is 3.
« A correct implementation of the increment method should throw a ValueTooLargeException when the counter's current value reaches the maximum.

Now consider the following console tester:

1 |public class CounterTester2 {

2 public static void main(String[] args) {

3 Counter c = new Counter();

4 println("Current val: " + c.getValue());

5 try {

6 c.increment (); c.increment(); c.increment();

Vi println("Current val: ™ + c.getValuel());

8 try {

9 c.increment () ;

10 printin("Error: ValueToolargeException NOT thrown.");
11 } /+ end of inner try x/

12 catch (ValueTooLargeException e) {

13 printlin("Success: ValueToolargeException thrown.");
14 } /* end of inner catch #*/

15 } /% end of outer try */

16 catch (ValueTooLargeException e) {

17 println("Error: ValueTooLargeException thrown unexpectedly.");
18 } /* end of outer catch */

19 } /+ end of main method */
20 |} /* end of CounterTester2 class */

Say the increment method is implemented incorrectly as follows: Tst line to execute (if any): ‘ L3 of CounterTester2 ‘

2nd line to execute (if any): ‘ L4 of CounterTester2

public void increment() throws ValueTooLargeException {
if (value < Counter.MAX_VALUE) { 3rd line to execute (if any): | L6 of CounterTester2
throw new ValueTooLargeException("value is " + value);
} 4th line to execute (if any): | L17 of CounterTester2
else { value ++; } . .) 7
} 5th line to execute (if any): | Execution Terminated
o . o)) . 6th line to execute (if any): | Execution Terminated
From the following lines of execution, drag and drop the relevant ones to indicate the corresponding runtime execution path.

Where the execution already terminates, drag and drop "Execution Terminated" to the execution line. 7th line to execute (if any):| Execution Terminated

WrittenTest1 Practice: Q11 ol [, A

Assume a non-empty integer array ns of length 3 and an integer variable i | d\ +| on /

Consider the foIIoW G‘UQrdl V\S \
1
fg zii ns[i] % 2 == 1 & i < ns.length) , S‘\M“\' circv \‘\. CVO)UG-} 0,)
t.printIn("Outcome 1"); ’ } \)\\
} |
else { 0 ’ «

System.out.println("Outcome 2");
} q,/

When executing the above program, which of the following value or values of variable i will result in an ArraylndexOutOfBoundsException?

Oa 2 o = i ns [_9\,3 l

S e nsg?;\)<

]d. O

| e. None of the listed answers is correct.
! :é. o = -’i
Fle <Gl GGR s

